Главная Главная по Компьютерным сетям

  1. В.Г. Олифер Базовые технологии компьютерных сетей (ознакомительное качество) Высокое качество PDF, для печати :-)
  2. Михаил Гук. Интерфейсы ПК. Справочник (ознакомительное качество) Высокое качество PDF, для печати :-)
Пользовательского поиска

http://seticom-video.narod.ru
ВИДЕО-ФОТО-съёмка

Предыдущая | Оглавление | Следующая

Часть II. Сетевые устройства

Глава 5. Топологии локальных сетей

Топологии локальных сетей можно описывать как с физической, так и с логической точки зрения. Физическая топология описывает геометрическое упорядочение компонентов локальной сети. Топологию нельзя рассматривать как обычную схему сети. Это теоретическая конструкция, которая графически передает форму и структуру локальной сети.

Логическая топология описывает возможные способы соединения между парами взаимодействующих конечных точек. С помощью логической топологии удобно определять наборы конечных точек, которые в состоянии взаимодействовать друг с другом, а также пары конечных точек, взаимодействующие с помощью непосредственного физического соединения. В этой главе внимание сосредоточено исключительно на физических топологиях.

Основные топологии

Существует три основные физические топологии: шинная (bus), кольцевая (ring) и звездообразная (star). Каждая топология продиктована определенной технологией кадров локальной сети. Например, сети Ethernet (по определению) исторически используют звездообразные топологии. Использование коммутации на уровне кадров изменило положение вещей. Все локальные сети, применяющие упомянутый тип коммутации, вне зависимости от типа кадров или метода доступа к среде передачи построены на основе одной и той же топологии. С недавнего времени коммутируемую топологию можно считать полноправным членом привычного трио основных топологий локальных сетей.

Шинная топология

Шинная топология (см. рисунок 5.1) соответствует соединению всех сетевых узлов в одноранговую сеть с помощью единственного открытого (open-ended) кабеля. Кабель должен оканчиваться резистивной нагрузкой - так называемыми оконечными резисторами (terminating resistors). Единственный кабель в состоянии поддерживать только один канал. В данной топологии кабель называют шиной (bus).

Типичная шинная топология предполагает использование единственного кабеля без дополнительных внешних электронных устройств с целью объединения узлов в одноранговую сеть. Все подключенные устройства прослушивают трафик шины и принимают только те пакеты, которые адресованы им. Отсутствие необходимости использования сложных внешних устройств (например, повторителей) в значительной степени упрощает процедуру развертывания шинной локальной сети. Затраты на развертывание также будут незначительными. К недостаткам данной топологии можно отнести ограниченные функциональные возможности, а также недостаточные расстояния передачи данных и расширяемость.

Данную топологию целесообразно применять только в небольших локальных сетях. Поэтому использующие шинную топологию современные коммерческие продукты ориентированы на развертывание недорогой одноранговой сети с ограниченными функциональными возможностями. Такие продукты предназначены для домашних сетей и сетей небольших офисов.

Единственным исключением являлась локальная сеть Token Bus, соответствующая спецификации IEEE 802.4. Эта технология была достаточно здравой и детерминистической, во многом напоминая стандарт Token Ring. Тем не менее сети стандарта Token Bus использовали не кольцевую, а шинную топологию.

Стандарт Token Bus не пользовался популярностью на рынке. Для его реализации приходилось использовать специальную проводку. Технологические усовершенствования других стандартов и топологий локальных сетей сделали эту сложную шинную топологию устаревшей.

Кольцевая топология

Кольцевая топология впервые была реализована в простых одноранговых локальных сетях. Каждая рабочая станция соединялась с двумя ближайшими соседями (см. рисунок 5.2). Общая схема соединения напоминала замкнутое кольцо. Данные передавались только в одном направлении. Каждая рабочая станция работала как ретранслятор, принимая и отвечая на адресованные ей пакеты и передавая остальные пакеты следующей рабочей станции, расположенной «ниже по течению».

РИСУНОК 5.1. Пример шинной топологии.

РИСУНОК 5.2. Одноранговая кольцевая топология.

В первоначальном варианте кольцевой топологии локальных сетей использовалось одноранговое соединение между рабочими станциями. Поскольку соединения такого типа имели форму кольца, они назывались замкнутыми (closed). Преимуществом локальных сетей этого типа является предсказуемое время передачи пакета адресату. Чем больше устройств подключено к кольцу, тем дольше интервал задержки. Недостаток кольцевой топологии в том, что при выходе из строя одной рабочей станции прекращает функционировать вся сеть.

После появления архитектуры Token Ring, разработанной корпорацией IBM и стандартизированной впоследствии в спецификации IEEE 802.5, первые примитивные версии кольцевой архитектуры были признаны несостоятельными. Архитектура Token Ring отступила от одноранговой схемы соединений в пользу ретранслирующего концентратора. Отказ от топологии однорангового кольца в значительной степени повысил устойчивость всей сети к отказам отдельных рабочих станций. Сети архитектуры Token Ring, несмотря на свое название, реализуют топологию звезды и циклический метод доступа (см. рис. 5.3).

Реализующие звездообразную топологию локальные сети в состоянии поддерживать цикличный метод доступа. Проиллюстрированная на этом рисунке сеть Token Ring представляет собой виртуальное кольцо, образованное методом доступа по алгоритму циклического обслуживания (round-robin access method). Сплошные линии соответствуют физическим соединениям, а штриховые обозначают направление логического потока данных.

Если рассматривать функциональное устройство, достаточно сказать, что маркер доступа циклически передается между конечными сетевыми устройствами. В результате большинство людей совершенно искренне относят архитектуру Token Ring к кольцевой топологии, хотя на самом деле эта архитектура близка к звездообразной топологии.

РИСУНОК 5.3. Звездно-кольцевая топология.

Топология типа «звезда»

Локальные сети звездообразной топологии объединяют устройства, которые как бы расходятся из общей точки - концентратора (см. рис. 5.4). Если мысленно представить концентратор в качестве звезды, соединения с устройствами будут напоминать ее лучи - отсюда и название топологии. В отличие от кольцевых топологий, физических или виртуальных каждому сетевому устройству предоставлено право независимого доступа к среде передачи. Такие устройства вынуждены совместно использовать доступную полосу пропускания концентратора. Примером локальной сети звездообразной топологии является Ethernet.

Небольшие локальные сети, реализующие звездообразную топологию, в обязательном порядке используют концентратор. Любое устройство в состоянии обратиться с запросом на доступ к среде передачи независимо от других устройств.

Звездообразные топологии широко используются в современных локальных сетях. Причиной такой популярности является гибкость, возможность расширения и относительно низкая стоимость развертывания по сравнению с более сложными топологиями локальных сетей со строгими методами доступа к среде передачи данных. Рассматриваемая архитектура не только сделала шинные и кольцевые топологии принципиально устаревшими, но и сформировала базис для создания следующей топологии локальных сетей - коммутируемой.

Коммутируемая топология

Коммутатор (switch) является многопортовым устройством канального уровня (второй уровень справочной модели OSI). Коммутатор «изучает» МАС-адреса и накапливает данные о них во внутренней таблице. Между автором кадра и предполагаемым получателем коммутатор создает временное соединение, по которому и передается кадр.

В стандартной локальной сети, реализующей коммутируемую топологию, все соединения устанавливаются через коммутирующий концентратор (switching hub), что и проиллюстрировано на рисунке 5.5. Каждому порту, а следовательно, и подключенному к порту устройству, выделена собственная полоса пропускания. Первоначально принцип действия коммутаторов основывался на передаче кадров в соответствии с МАС-адресами, однако технологический прогресс внес свои коррективы. Современные устройства в состоянии коммутировать ячейки (пакеты кадров, имеющие фиксированную длину и соответствующие второму уровню структуры передачи данных). Кроме того, коммутаторы поддерживают протоколы третьего уровня, а также распознают IP-адреса и физические порты коммутатора-концентратора.

РИСУНОК 5.4. Звездообразная топология.

РИСУНОК 5.5. Коммутируемая топология.

РИСУНОК 5.6. Объединенные в последовательную цепочку концентраторы.

Коммутаторы повышают производительность локальной сети двумя способами. Первый способ заключается в расширении полосы пропускания, доступной сетевым устройствам. Например, коммутатор-концентратор Ethernet с восемью портами обладает таким же количеством отдельных доменов по 10 Мбит/с каждый, обеспечивая суммарную пропускную способность 80 Мбит/с.

Второй способ повышения производительности локальной сети сводится к уменьшению количества устройств, которые вынуждены использовать все сегменты полосы пропускания. В каждом выделенном коммутатором домене находятся только два устройства: собственно сетевое устройство и порт коммутатора-концентратора, к которому оно подключено. Вся полоса пропускания 10 Мбит/с принадлежит двум устройствам сегмента. В сетях, которые не поддерживают конкурирующие методы доступа к среде передачи, например, в Token Ring или FDDI, область циркуляции маркера будет ограничена меньшим количеством сетевых устройств.

Открытым вопросом остается изоляция трафика в больших сетях. Приемлемая производительность поддерживается исключительно сегментацией конфликтных, но не передающих доменов. Чрезмерно насыщенный трафик в значительной степени снижает производительность локальной сети.

Выбор подходящей топологии

Четыре рассмотренные топологии можно считать элементарными блоками для построения локальных сетей. Их можно комбинировать всевозможными способами и расширять. При выборе топологии следует учитывать в первую очередь требования к производительности сети конкретных приложений-клиентов. Вполне вероятно, что идеальным вариантом окажется комбинация основных топологий.

Сложные топологии

Сложные топологии являются расширениями и/или комбинациями основных физических топологий. Сами по себе основные топологии целесообразно использовать только в небольших локальных сетях. Возможность расширения сетей основных топологий чрезвычайно ограничена. Гораздо выгоднее оказывается создать сложную топологию, объединив для этого в одну локальную сеть сегменты различных топологий.

Последовательная цепочка

Простейшая из сложных топологий последовательно соединяет все концентраторы сети (см. рис. 5.6). Подобная схема получила название последовательной цепочки (daisy chaining). Соединения между концентраторами устанавливаются с помощью их же портов. В результате построение объединяющей магистрали такого типа не связано с дополнительными расходами.

Создание связи между концентраторами небольших локальных сетей представляет собой довольно привлекательный способ объединения небольших локальных сетей. Последовательную цепочку несложно построить, для ее администрирования не нужны специальные навыки. Исторически сложилось так, что именно эта топология чаще всего использовалась для объединения локальных сетей первого поколения.

Естественно, что последовательная цепочка в состоянии объединить ограниченное количество сегментов. Спецификации локальных сетей, в частности, 802.3 Ethernet, пытаются определить максимальный размер сети исходя из количества концентраторов и/или повторителей, которые могут быть объединены в последовательную цепочку. Предложенные спецификациями физического уровня ограничения на расстояние между устройствами, умноженные на количество устройств, и определяют максимальный размер локальной сети. Эта величина называется максимальным диаметром сети (maximum network diameter). Превышение диаметра отрицательно влияет на работоспособность локальной сети. Количество концентраторов, которые могут быть соединены в последовательную цепочку, чаще всего определяется именно максимальным диаметром сети. Особенно это касается современных высокопроизводительных локальных сетей, например Fast Ethernet, которые накладывают жесткие ограничения на диаметр сети и количество соединенных концентраторов.

В сетях с топологией последовательной цепочки, которые поддерживают конкурирующий метод доступа к среде передачи, проблемы начинают возникать еще до достижения максимального диаметра. Последовательная цепочка увеличивает число соединений и соответственно устройств локальной сети. При этом суммарная полоса пропускания не расширяется и количество доменов конфликтных сегментов не увеличивается. Рассмотренная топология просто увеличивает количество машин, пользующихся общей полосой пропускания. Машины, конкурирующие за доступ к среде передачи, создают конфликтные ситуации и быстро ставят локальную сеть на колени.

Специалисты рекомендуют использовать эту топологию в локальных сетях с ограниченным количеством концентраторов в небольших глобальных сетях.

Иерархии

Иерархические топологии предполагают использование более чем одного уровня концентраторов. Каждый уровень выполняет отдельную сетевую функцию. На нижний ярус концентраторов возлагается задача обработки запросов на соединение между рабочими станциями и серверами. Ярусы более высоких уровней агрегируют низшие ярусы. Иерархическое упорядочение оптимальным образом подходит для локальных сетей среднего и большого размера при условии, что предполагается их дальнейшее расширение и повышение интенсивности трафика.

Иерархические кольца

Реализующие кольцевую топологию сети расширяются путем установления соединения между несколькими кольцами способом, проиллюстрированным на рисунке 5.7. Для соединения рабочих станций и серверов используется столько колец, сколько необходимо для поддержки необходимой производительности. Кольцо второго яруса, будь то Token Ring или FDDT, используется для межсоединения всех колец пользовательского уровня и обеспечения доступа к глобальной сети.

Небольшие локальные сети расширяются путем установления иерархических соединений между несколькими кольцами. На этом рисунке представлено эстафетное кольцо 16 Мбит/с (логически показано как кольцо, хотя на самом деле является архитектурой типа «звезда»), которое используется для объединения пользовательских станций, а также кольца FDDI, которые используются на уровне серверов и магистрали.

РИСУНОК 5.7. Топология иерархического кольца.

РИСУНОК 5.8. Топология иерархической звезды.

Иерархические звезды

Звездные топологии также могут быть созданы путем иерархического объединения нескольких несложных сетей такой же архитектуры (см. рис. 5.8). Иерархические звезды могут состоят из единственного конфликтного домена или с помощью коммутаторов и мостов сегментированы на несколько конфликтных доменов.

Топология иерархической звезды предполагает использование одного яруса концентраторов для обеспечения возможности соединения пользователей и сервера и второго яруса концентраторов, поддерживающих магистраль передачи данных.

Иерархические комбинации

Общая производительность сети может быть повышена только в случае соблюдения всех требований, которые накладываются на отдельные компоненты. Современные коммутирующие концентраторы позволяют одновременно использовать преимущества нескольких технологий. Для поддержки новой топологии достаточно вставить в концентратор соответствующую плату. Иерархическая топология представляет собой комбинацию различных топологий (см. рис. 5.9).

В этом примере комбинированной иерархической топологии магистраль, поддерживающая асинхронный режим передачи (Asynchronous Transfer Mode - ATM), используется для соединения пользовательских концентраторов. Серверы объединены в кольцо FDDI, в то время как пользовательские станции используют стандарт Ethernet.

РИСУНОК 5.9. Комбинированная иерархическая топология.

РИСУНОК 5.10. Область рабочих станций локальной сети.

Функциональные области локальных сетей

Изменения топологии могут играть важную роль в процессе настройки каждой функциональной области локальной сети. Локальная сеть состоит из четырех отдельных функциональных областей: области рабочих станций, области серверов, области соединения с глобальной сетью и магистрали. Каждая из областей наилучшим образом справляется с определенным кругом задач.

Область рабочих станций

Основной задачей большинства локальных сетей является обеспечение возможности связи между рабочими станциями. На область связности рабочих станций локальной сети не накладываются строгие требования производительности. Очевидными исключениями являются рабочие станции систем САПР, рабочие станции для проведения видеоконференций и т.п. В общем случае компромисс между стоимостью и производительностью этой части локальной сети вряд ли будет решен в пользу производительности.

Объединение машин, обладающих различной сетевой производительностью, может потребовать использования различных технологий (см. рис. 5.10). К счастью, большинство изготовителей современных концентраторов интегрируют в одном устройстве поддержку различных топологий.

Локальные сети обеспечивают возможность соединения рабочих станций и периферийных устройств. Вследствие различных требований к производительности сетевого оборудования возникает необходимость использовать различные топологии.

Область серверов

Поскольку серверы обслуживают запросы нескольких рабочих станций, а также других серверов, они вынуждены обрабатывать довольно интенсивный трафик. Серверы с большим объемом дисковой памяти (high-volume servers) требуют учитывать возможность интенсивного трафика при выборе топологии локальной сети. В противном случае обработка запросов клиентов и других серверов в значительной степени снизит производительность сети. Естественно, что серверы должны обладать более высокой производительностью по сравнению с рабочими станциями и поддерживать более ошибкоустойчивый метод доступа к среде передачи.

Воздействуя на топологию локальной сети, можно добиться оптимального соответствия производительности самого сервера и его кластеров сформулированным требованиям. На рисунке 5.11, например, реализована комбинированная иерархическая топология. Набор серверов объединен в небольшое кольцо FDDI, в то время как рабочие станции используют стандартную архитектуру Ethernet.

Область соединения с глобальной сетью

Область локальной сети, предназначенная для установления соединения с глобальной, часто упускается из виду. В большинство случаев единственным устройством этой области является канал связи между магистралью и маршрутизатором (см. рис. 5.12).

РИСУНОК 5.11. Область серверов локальной сети.

РИСУНОК 5.12. Область соединения с глобальной сетью.

Соединение с маршрутизатором, предоставляющим доступ к глобальной сети, является критическим звеном в общей топологии локальной сети. Некорректное конструктивное решение приведет к снижению эффективности обработки исходящего и входящего трафика. Не рекомендуется использовать технологии локальных сетей, которые используют конкурирующие методы доступа к среде передачи.

Поддерживающие интенсивный трафик между локальной и глобальной областью сети выгодным образом отличаются здравым методом установления соединения. Выбранная технология должна быть здравой с точки зрения номинальной скорости передачи данных и метода доступа к среде. Технологии конкурирующего метода доступа к среде использовать нецелесообразно. В этом случае даже если выделить для канала связи отдельный порт коммутатора, область связи с глобальной сетью превратится в самое узкое место системы.

Магистраль

Магистраль (backbone) локальной сети выполняет функции межсоединения всех концентраторов. Область магистрали можно построить в различных топологиях с помощью нескольких сетевых компонентов (см. рис. 5.13).

Магистраль локальной сети выполняет очень важную функцию, объединяя все локальные сетевые ресурсы и, если это возможно, глобальную сеть. Логическое определение магистрали можно дать несколькими способами.

Выбор корректной топологии магистрали локальной сети представляет собой далеко не простую задачу. Некоторые варианты весьма привлекательны с точки зрения стоимости, их проще реализовать и настроить. Другие требуют дополнительных вложений и сложны в реализации. Следует также учитывать возможность расширения различных магистральных топологий. Некоторые топологии даже после расширения требуют дополнительных затрат на обеспечение приемлемого уровня производительности. Все возможные варианты должны быть тщательно проанализированы исходя из конкретных требований.

Последовательная магистраль

Представленная на рисунке 5.14 последовательная магистраль (serial backbone) представляет собой не что иное, как набор концентраторов, соединенных в последовательную цепочку. Как уже указывалось в предыдущих разделах, подобную топологию целесообразно использовать только в небольших сетях.

Концентраторы, объединяющие в сеть рабочие станции и серверы, могут быть последовательно соединены друг с другом, образуя таким образом своего рода примитивную магистраль. Как упоминалось выше, подобный способ соединения называется последовательной цепочкой.

РИСУНОК 5.13. Магистраль локальной сети.

РИСУНОК 5.14. Последовательная магистраль или последовательная цепочка.

Распределенная магистраль

Распределенной магистрали (distributed backbone) соответствует иерархическая топология, в которой магистральный концентратор занимает центральное местоположение. В роли магистрального концентратора обычно выступает телефонная станция учреждения с выходом в глобальную сеть. Если учитывать схему проводки в здании, телефонная станция занимает идеальное положение. Центральный концентратор соединен с другими концентраторами здания (см. рис. 5.15).

В отличие от последовательной магистрали такая топология позволяет локальной сети охватывать большие здания, не превышая при этом максимальный диаметр сети.

Распределение магистрали подобным образом требует знания топологии проводки здания и ограничений, диктуемых различными средами передачи. Идеальным вариантом при построении распределенной магистрали в достаточно больших сетях является использование волоконно-оптической проводки.

Локализованная магистраль

Топология локализованной магистрали (collapsed backbone) предполагает использование центрального маршрутизатора, соединяющего все сегменты локальной сети. Маршрутизатор эффективно создает конфликтные и передающие домены, увеличивая таким образом производительность каждого сегмента локальной сети.

Маршрутизаторы функционируют на третьем уровне справочной модели OSI и проигрывают в быстродействии концентраторам. В результате существует некоторая вероятность снижения скорости передачи данных между сегментами локальной сети.

Локализованная магистраль является наиболее уязвимым местом (single point of failure) локальной сети (что наглядно иллюстрирует рисунок 5.16). Это не столь существенный недостаток - использование многих других топологий также связано с возможностью выхода из строя всей локальной сети после отказа единственного элемента. Тем не менее это обстоятельство обязательно следует учитывать при выборе топологии сети.

Сегменты локальной сети вполне могут быть объединены маршрутизатором, который выступает в качестве локализованной магистрали. Такая топология поддерживает централизованное управление сетью, но одновременно характеризуется задержками в передаче данных и возможностью выхода из строя всей сети после отказа единственного элемента.

РИСУНОК 5.15. Распределенная магистраль.

РИСУНОК 5.16. Локализованная магистраль.

Обязательно следует учитывать тот факт, что рабочие станции пользователей очень редко бывают распределены по зданию удобным способом. Скорее всего, возникнет необходимость выделения в сети нескольких сегментов. Вполне вероятно, что некоторые сегменты будут расположены в непосредственной близости. Топологии локализованных магистралей следует планировать с особой тщательностью. Опрометчиво и неудачно спланированные топологии окажут отрицательное влияние на производительность сети.

Параллельная магистраль

В некоторых случаях, когда использовать локализованные магистрали не представляется возможным, приходится идти на некоторый компромисс. Довольно часто этот компромисс приводит к необходимости реализации параллельной магистрали. Существует немало причин для создания магистрали рассматриваемого типа. Рабочие станции пользователей могут быть в значительной степени рассеяны в здании, некоторые рабочие группы и/или приложения могут выдвигать строгие требования к безопасности. Кроме того, может возникнуть необходимость постоянной доступности среды передачи. В любом случае заведение параллельных связей от маршрутизатора локализованной магистрали ко всем телефонным коробкам позволит поддерживать множественные сегменты каждой коробки (см. рис. 5.17).

Топологию параллельной магистрали можно считать модификацией локализованной топологии. В одной телефонной коробке или комнате с оборудованием поддерживается несколько сегментов. В результате несколько увеличиваются затраты на развертывание сети, но одновременно повышается производительность каждого сегмента и его соответствие таким дополнительным критериям, как безопасность.

Выводы по функциональным областям локальных сетей

Глубокое понимание требований к производительности, выдвигаемых покупателями и функциональными областями локальных сетей, является обязательным условием для разработки идеальной топологии, удовлетворяющей всем нуждам пользователя. Потенциальные комбинации ограничены только фантазией разработчика. Технические новинки постоянно расширяют диапазон возможных решений.

РИСУНОК 5.17. Топология параллельной магистрали.

Различные критерии

При выборе топологии локальной сети учитывается множество других критериев, как технических, так и финансовых. Общая топология должна быть определена с точки зрения требований пользователя к производительности. При выборе и/или доработке топологии следует учитывать максимальное количество критериев.

Стоимость

Придумать топологию сети с абсолютно фантастической стоимостью не составит никакого труда. Но даже очень богатые компании выделяют на развертывание сети фиксированную сумму. Реализуемая топология должна иметь оптимальное соотношение стоимость/соответствие требованиям пользователей.

Использование устаревшего оборудования

Множество причин могут помешать воплотить идеальную во всех отношениях топологию. Физическая проводка и расположение рабочих станций в здании вполне могут оказаться причинами отказа от развертывания планируемой топологии. Замена проводки в значительной степени увеличит стоимость проекта. Аналогично если компания имеет значительные вложения в устаревшие технологии, вряд ли удастся развернуть «идеальную сеть» и топологию. И наконец, недостаточное финансирование также сведет на нет все старания проектировщиков сети.

Все перечисленные причины вносят свою лепту в постепенный отказ от идеальной топологии. Именно поэтому они должны быть тщательно проанализированы и учтены перед приобретением необходимого оборудования.

Виды на будущее

Было бы глупо разрабатывать сеть, не учитывая при этом обстоятельства, которые могут возникнуть в обозримом будущем. Новинки сетевых и компьютерных технологий, изменение трафика и/или расположения сетевых устройств и миллионы других факторов могут в значительной степени изменить представления пользователей о должной производительности сети. Сеть и ее топология должны быть достаточно гибкими для реагирования на будущие изменения.

Резюме

Топология локальной сети является одним из самых критичных факторов, влияющих на производительность. В случае необходимости четыре основные топологии (коммутируемую, звездообразную, кольцевую и шинную) можно комбинировать произвольным образом. Возможные комбинации не ограничены рассмотренными в этой главе. Большинство современных технологий локальных сетей не только приветствуют, но даже обязывают использовать творческий подход. Очень важно разбираться в преимуществах и недостатках топологий, влияющих на производительность сети. Кроме того, следует учитывать и такие казалось бы необъективные факторы, как расположение рабочих станций в здании, пригодность кабеля, а также даже тип и способ проводки.

В конечном счете основным критерием выбора удачной топологии являются требования пользователей к производительности. Такие факторы, как стоимость, предполагаемая модернизация и ограничения существующих технологий, играют второстепенную роль. Сложнее всего будет перевести устные пожелания пользователей в мегабиты в секунду (Мбит/с) и другие характеристики производительности сети.

Предыдущая | Оглавление | Следующая


Главная Главная по Компьютерным сетям


Сайт создан в системе uCoz