К предыдущему документу | Главная | К следующему документу |
Коммуникации: обеспечение точной доставки данных между конечными станциями. |
|
|
Прикладной уровень |
|
|
Представительный уровень |
||
Сеансовый уровень |
||
Транспортный уровень |
||
Соединение: управление физической доставкой данных по сети. |
Сетевой |
|
Канальный уровень |
|
|
Физический уровень |
|
Эталонная модель взаимодействия открытых систем (OSI, Open Systems Interconnection)
Основным, с точки зрения пользователя, является прикладной уровень. Этот уровень обеспечивает выполнение прикладных процессов пользователей. Наряду с прикладными протоколами, он определяет протоколы передачи файлов, виртуального терминала, электронной почты.
Следующий (шестой) уровень называется представительным (уровень представления данных). Он определяет единый для всех систем синтаксис передаваемой информации. Необходимость данного уровня обусловлена различной формой представления информации в сети передачи данных и компьютерах. Этот уровень играет важную роль в обеспечении “открытости” систем, позволяя им общаться между собой независимо от их внутреннего языка.
Пятый уровень называют
сеансовым, так как основным его назначением является организация сеансов связи между прикладными процессами различных рабочих станций. На этом уровне создаются порты для приема и передачи сообщений и организуются соединения — логические каналы между процессами. Необходимость протоколов этого уровня определяется относительной сложностью сети передачи данных и стремлением обеспечить достаточно высокую надежность передачи информации.Четвертый, транспортный уровень (уровень сквозной передачи) служит для передачи данных между двумя взаимодействующими открытыми системами и организации процедуры сопряжения абонентов сети с системой передачи данных. На этом уровне определяется взаимодействие рабочих станций — источника и адресата данных, организуется и поддерживается логический канал (транспортное соединение) между абонентами.
Третий, сетевой уровень, предназначен для маршрутизации информации и управления сетью передачи данных. В отличие от предыдущих, этот уровень в большей степени ориентирован на сеть передачи данных. Здесь решаются вопросы управления сетью передачи данных, в том числе маршрутизация и управление информационными потоками.
Канальный уровень обеспечивает функциональные и процедурные средства для установления, поддержания и расторжения соединений на уровне каналов передачи данных. Процедуры канального уровня обеспечивают обнаружение и, возможно, исправление ошибок, возникающих на физическом уровне.
Физический уровень обеспечивает механические, электрические, функциональные и процедурные средства организации физических соединений при передаче бит данных между физическими объектами.
Четыре нижних уровня образуют транспортную службу компьютерной сети, которая обеспечивает передачу (“транспортировку”) информации между рабочими станциями, освобождая более высокие уровни от решения этих задач.
В свою очередь, три верхних уровня, обеспечивающие логическое взаимодействие прикладных процессов, функционально объединяются в абонентскую службу.
В рамках эталонной модели также определяются услуги, которые должны обеспечивать ее уровни. Услуги, по сути дела, представляют собой функции, выполняемые на соответствующем уровне эталонной модели.
В частности, физический уровень должен обеспечивать такие виды услуг, как установление и идентификация физических соединений, организация последовательностей передачи бит информации, оповещение об окончании связи.
Канальный уровень обеспечивает организацию нужной последовательности блоков данных и их передачу, управление потоками между смежными узлами, идентификацию конечных пунктов канальных соединений, обнаружение и исправления ошибок, оповещение об ошибках, которые не исправлены на канальном уровне.
Сетевой уровень в числе основных услуг осуществляет идентификацию конечных точек сетевых соединений, организацию сетевых соединений, управление потоками блоков данных, обеспечение последовательностей доставки блоков данных, обнаружение ошибок и формирование сообщений о них, разъединение сетевых соединений.
Транспортный уровень обеспечивает установление и разъединение транспортных соединений, формирование блоков данных, обеспечение взаимодействия сеансовых соединении с транспортными соединениями, управление последовательностью передачи блоков данных, обеспечение целостности блоков данных во время передачи, обнаружение и устранение ошибок, сообщение о неисправленных ошибках, предоставление приоритетов в передаче блоков, передачу подтверждений о принятых блоках, ликвидацию тупиковых ситуаций.
На сеансовом уровне предоставляются услуги, связанные с обслуживанием сеансов и обеспечением передачи данных в диалоговом режиме, установлением сеансового соединения, обменом данными; управлением обменом; синхронизацией сеансового соединения, сообщениями об исключительных ситуациях, отображением сеансового соединения на транспортный уровень, завершением сеансового соединения.
Представительный уровень обеспечивает выбор вида представления данных, интерпретацию и преобразование передаваемой информации к виду, удобному для прикладных процессов, преобразование синтаксиса данных, формирование блоков данных.
Прикладной уровень обеспечивает широкий набор услуг, в том числе:
управление терминалами, управление файлами, управление диалогом, управление задачами, управление сетью в целом.
К дополнительным услугам уровня относятся услуги по организации электронной почты, передачи массивов сообщений и т.п.
Услуги различных уровней определяются с помощью протоколов эталонной модели взаимодействия открытых систем. В соответствии с семиуровневой моделью взаимодействия открытых систем вводятся семь типов протоколов, которые именуются так же, как уровни.
Протоколы локальных сетей
Под протоколами локальных сетей подразумевается набор протоколов первого и второго уровней эталонной модели, определяющих архитектуру локальной сети, в том числе ее топологию, передающую среду, технические средства и протоколы. Основополагающими для локальных сетей являются стандарты серии IEEE. С помощью этих стандартов были определены: основная терминология, архитектура и протоколы двух нижних уровней Эталонной модели взаимодействия открытых систем. Структура стандартов IEEE представлена на рисунке.
Структура стандарта IEEE
Стандарт IEEE 802.1 является общим документом, который определяет архитектуру и прикладные процессы системного управления сетью, методы объединения сетей на подуровне управления доступом к передающей среде. В соответствии с данным стандартом канальный уровень разбит на два подуровня: УЛК — управления логическим каналом и УДС — управления доступом к физической среде.
Стандарт IEEE 802.2 определяет протоколы управления логическим каналом, в том числе специфицирует интерфейсы с сетевым уровнем и подуровнем управления доступом к передающей среде. Каждый из остальных стандартов, начиная с IEEE 802.3, определяет метод доступа и специфику физического уровня для конкретного типа локальной компьютерной сети. Так, стандарт IEEE 802.3 описывает характеристики и процедуры множественного доступа с контролем передачи и обнаружением столкновений. Стандарт IEEE 802.4 определяет протокол маркерного доступа к моноканалу. Процедуры и характеристики маркерного метода доступа к кольцевой сети определяется стандартом IEEE 802.5. Для локальных сетей, охватывающих площадь радиусом до 25 км и использующих технические средства кабельного телевидения, разработан стандарт IEEE 802.6. Этот стандарт предусматривает передачу данных, речи, изображений и позволяет создавать так называемые городские локальные сети. В настоящее время продолжаются работы по стандартизации локальных компьютерных сетей. Так, в подкомитете IEEE 802.11 разрабатывается стандарт на радиосети для мобильных компьютеров, а в комитете IEEE 802.12 рассматривается стандарт на высокоскоростные компьютерные сети “lOOVG-AnyLAN.
В 1985 году серия стандартов IEEE 802 была принята Международной организацией стандартов за основу международных стандартов физического и канального уровней ISO/DIS 8802/2.2 — ISO/DIS 8802/5. Кроме того, эти стандарты были дополнены стандартом ISO/DIS 8802/7 на сети с тактируемым методом доступа к кольцу, разработанным на основе протоколов сети Cambridge Ring.
Транспортные протоколы
Транспортные протоколы предназначены для обеспечения надежной связи в процессе обмена информацией между абонентами компьютерной сети. Как известно, качество передачи информации во многом определяется используемой линией связи. Например, коммутируемые телефонные каналы сетей общего пользования характеризуются относительно высоким уровнем помех. При использовании подобных каналов в компьютерных сетях необходимо принимать дополнительные меры по повышению надежности передачи данных. В свою очередь, оптоволоконные линии связи характеризуются низким уровнем помех. В данном случае достаточно использовать минимальный набор транспортных услуг и простейший протокол обмена информацией. Особое значение транспортные протоколы приобретают в компьютерных сетях, передающая среда которых характеризуется относительно высоким уровнем ошибок и низкой надежностью передачи данных.
Одним из первых протоколов транспортного уровня является протокол АННР (ARPA Host-to-Host Protocol), разработанный для сети ARPA. Основное внимание в протоколе АННР уделялось управлению потоком данных, адресации пользователей, а также взаимодействию с программами, реализующими протоколы верхних уровней. Развитие сети ARPA в направлении использования сетей передачи данных общего пользования привело к появлению нового, более надежного протокола, известного в настоящее время под названием “протокол управления передачей” или TCP (сокращение от Transmission Control Protocol). Протокол TCP оказался достаточно удачным и был положен в основу стандартного международного протокола транспортного уровня. Соответственно, МККТТ определил рекомендацию Х.224 для данного транспортного протокола, а также рекомендацию Х.214 для транспортной службы.
С целью выбора оптимального набора транспортных услуг стандартным протоколом определено три типа (А, В, С) сетевых соединений и пять классов (О, 1, 2, 3, 4) транспортного протокола. В зависимости от характеристик конкретной сети передачи данных определяется тип сетевого соединения, которому она удовлетворяет. Затем, с учетом требуемого уровня качества передачи, выбирается необходимый класс транспортного протокола.
Межсетевые протоколы
Согласование компьютерных сетей между собой осуществляется в основном на сетевом и транспортном уровнях. В настоящее время используются два основных подхода к формированию межсетевого взаимодействия:
Основное различие этих подходов заключается в следующем: протокол IP относится к протоколам без установления логического соединения (дейтаграммным), а Рекомендация Х.75 предполагает организацию виртуального соединения (канала).
Становление корпоративных компьютерных сетей тесно связано с сетью Internet, в рамках которой были реализованы основные принципы и протоколы межсетевых соединений. С сетью Internet связано появление новой группы протоколов — так называемых межсетевых протоколов, или IP-протоколов (сокращение от Internet Protokol). Территориально располагаясь на сетевом уровне Эталонной модели, межсетевой протокол согласовывает транспортную и сетевую службы различных компьютерных сетей.
По мере развития различных компьютерных сетей стала очевидной потребность в их объединении. В связи с этим, начиная с 1973г., агентство ARPA начало осуществлять программу Internetting Project. Следовало определить, как связать сети между собой с учетом того, что каждая из них использует различные протоколы передачи информации. Для этой цели был предложен протокол TCP/IP (Transmission Control Protocol/ Internet Protocol). Собственно протокол TCP/IP состоит из двух протоколов: TCP и IP. Протокол TCP является стандартным транспортным протоколом и предоставляет сервис для надежной передачи информации между клиентами сети. Протокол IP обеспечивает сервис доставки пакетов между узлами сети Internet отвечает за адресацию сетевых узлов. В процессе своего функционирования протокол IP постоянно взаимодействует с протоколом межсетевых управляющих сообщений (1СМР — сокращение от Internet Control Message Protokol), образуя с ним так называемый межсетевой модуль (IP-модуль).
Протоколы TCP и IР располагаются в середине Эталонной модели взаимодействия открытых систем и тесно связаны с протоколами других уровней. В связи с этим термин “TCP/IP” обычно охватывает все, что связано с протоколами TCP и IP. Сюда входит целое семейство протоколов, прикладные программы и даже сама сеть. На рисунку приведены основные протоколы этого семейства и их соотношение с Эталонной моделью взаимодействия открытых систем.
Уровни Эталонной Протоколы TCP/IP модели
Уровни и межсетевые протоколы компьютерных сетей
Протокол UDP (User Datagram Protokol) — протокол пользовательских дейтаграмм является одним из двух основных протоколов, расположенных непосредственно над протоколом IP. Он предоставляет прикладным процессам ограниченный набор транспортных услуг, обеспечивая ненадежную доставку дейтаграмм. Протокол UDP использует такие сетевые приложения, как NFS (Network File Syst
em — сетевая файловая система) и SNMP (Simple Network Management Protokol — простой протокол управления сетью).В отличие от UDP, протокол TCP обеспечивает гарантированную доставку с установлением соединений в виде потоков байт.
Протокол Telnet является протоколом эмуляции терминала и позволяет рассматривать все удаленные терминалы как стандартные “сетевые виртуальные терминалы”. Протокол FTP (File Transfer Protocol — протокол передачи файлов) позволяет пользователю просмотреть каталог удаленного компьютера
, скопировать один или нескольких файлов.Протокол SMTP (Simple Mail Transfer Protokol — простой протокол передачи почты) поддерживает передачу электронной почты между произвольными узлами сети Internet.
Протокол ARP (Address Resolution Protokol — протокол разрешения адресов), осуществляет преобразование (отображение) IP-адресов в Ethernet адреса. Обратное преобразование осуществляется с помощью протокола RARP (Reverse Address Resolution Protokol — обратный протокол разрешения адресов).
Последовательность протоколов, непосредственно участвующих в передаче информации, называется стеком протоколов или протокольным стеком. Так, например, при передаче файлов через сеть Ethernet протокольный стек содержит протоколы: FTP/TCP/IP/IEEE 802.4.
В корпоративной сети важную роль играют механизмы преобразования физических адресов конкретной сети в межсетевые (Internet) адреса и обратно. В рамках каждой отдельной сети рабочие станции взаимодействуют между собой на канальном уровне, используя для этого свою систему адресации
. Так, физический адрес в сети Ethernet задается шестибайтовым числовым значением, каждый байт записывается в шестнадцатеричной системе и отделяется двоеточием, например: 07:01:АО:47:54:С4.Для обеспечения условия “открытости” систем межсетевые адреса, называемые IP-адресами, являются логическими и не зависят от аппаратуры или конфигурации сети. IP-адрес состоит из четырех десятичных цифр (каждый по величине не больше 255), отделенных друг от друга точками, например
10.18.57.10. Крайнее слева число обозначает базовую сеть, последующие числа указывают на более мелкие участки внутри этой сети — до адреса конкретного компьютера. Для облегчения запоминания адресов широко используется их именное обозначение, называемое доменным. Преобразование домена в цифровой адрес осуществляется автоматически при маршрутизации сообщения. Доменные имена обладают постоянной структурой, опираясь на которую можно понять, к чему они относятся. Система доменных имен (DNS), описывающая компьютеры и организации, в которых они установлены, устроена зеркально по отношению к цифровой IP-адресации. Если в IP-адресе наиболее общая информация указана слева, то в доменных именах она находится справа. IP-пакет помещается в физический кадр той сети, по которой он в настоящий момент передается. IP-пакет содержит межсетевой адрес узла-получателя, сетевой кадр данных, в свою очередь должен, содержать физический адрес узла-получателя. Особую актуальность приобретает механизм преобразования (отображения) адресов для широковещательных сетей, таких как Ethernet, Token Ring и им подобные. Эта процедура реализуется с помощью протокола ARP. Перед началом передачи IP-пакета узел должен определить, какой физический адрес в сети соответствует адресу получателя, заданному в IP-пакете. Для этого узел посылает широковещательный пакет ARP, содержащий IP-адрес получателя. После этого он ожидает ответ от узла с данным IP-адресом. Получатель посылает информационный кадр с указанием своего физического адреса. С целью сокращения времени передачи пакетов и уменьшения числа широковещательных запросов, каждый узел содержит кэш-память, в которой хранится таблица разрешения адресов. С помощью этой таблицы задается соответствие между физическими и IP-адресами. Сначала физический адрес ищется в таблице разрешения адресов. Если узел находит соответствующий физический адрес для IP-пакета, то он использует его для обращения к получателю. В противном случае узел запускает процедуру ARP, по завершении которой осуществляется соответствующая коррекция таблицы разрешения адресов.Протоколы прикладного уровня
Три верхних уровня Эталонной модели взаимодействия открытых систем — сеансовый, представительный и прикладной уровень определяют протоколы, ориентированные на приложения. Протоколы верхних уровней устанавливают стандартные для компьютерной сети процедуры выполнения прикладных функций.
Так, протокол передачи, доступа и управления файлом (File, Transfer, Access and Management —
FTAM) и соответствующая ему прикладная служба определяется стандартом ISO 8571 Международной организации стандартов. Стандартизация обеспечивает взаимодействие пользователейфайловых систем в процессе передачи, доступа или управления хранящейся информацией таким образом, как если бы файлы хранились в самих этих системах. В качестве пользователя файловых систем выступает прикладной процесс, называемый процесс-клиент. Процесс, с помощью которого организуется доступ к удаленному накопителю файлов (файл-серверу), получил название процесс файл-сервер. В качестве поставщика средств, с помощью которых процесс-клиент получает доступ к удаленному накопителю файлов, выступает специальный элемент прикладной службы передачи, доступа и управления файлом.
С целью предоставления возможности подключения различных терминалов к компьютерной сети была разработана концепция виртуального терминала.
Виртуальный терминал представляет собой некоторый гипотетический терминал, обобщающий в себе характерные свойства заданного класса устройств (терминалов). Виртуальный терминал реализуется с помощью специального элемента прикладной службы, определенного в документе ISO/DIS 9040.2 Международной организации стандартов. При этом оконечная сторона (пользователь сети) преобразовывает информацию своего терминала в формат виртуального терминала для передачи в компьютерную сеть. Правила преобразования задаются с помощью протокола виртуального терминала (Virtual Terminal Protocol — VTP), изложенного в документе ISO/DIS 9041.2. Целью этого стандарта является определение алгоритмов взаимодействия протокольных модулей для обеспечения базисного класса службы виртуального терминала. Стандарт определяет следующие основные функции протокола виртуального терминала: установление и завершение ассоциации виртуального терминала, согласование, управление диалогом, передача данных, управление доставкой, обработка ошибок. Кроме того, стандарт специфицирует: наборы процедур для ориентированной на соединение передачи данных и управляющей информации, синхронный и асинхронный режимы работы, средства согласования процедур и параметров службы, а также форматы и правила формирования блоков данных.Особое место среди служб прикладного уровня занимает
система обработки сообщений (Massage Handling Systems — MHS), предназначенная для обеспечения надежной передачи информации между абонентами компьютерной сети. Особенностью этой системы является асинхронность, то есть передача информации с промежуточным накоплением. В этом смысле функционирование системы обработки сообщений напоминает работу почтовой службы. Поэтому такую систему называют также службой электронной почты. Модель и элементы службы электронной почты определены рекомендациями серии Х.400 МККТТ, которая и принята Международной организацией стандартов за основу системы обработки сообщений. Рекомендация Х.400 определяет правила взаимодействия абонента (пользователя) с системой при подготовке и редактировании, а также приеме сообщений. Следующая рекомендация серии — Х.401; она определяет услуги базовых служб, обеспечивающих передачу сообщений и поддержку работы системы обработки сообщений. Рекомендация Х.408 описывает правила преобразования кодов и форматов, а Х.409 определяет синтаксис и систему обозначений передаваемых данных. Самой объемной рекомендацией этой серии является рекомендация Х.410, которая содержит описание общих методов системы обработки сообщений. Рекомендация Х.411 содержит описание протоколов служб передачи сообщений.Пользователь может являться отправителем или получателем сообщений. Прежде чем послать сообщение, пользователь оформляет его, придавая соответствующий вид и используя нужный синтаксис. (Для этого в большинстве современных компьютерных сетей имеются почтовые программы). Сообщение, сформированное с помощью специальной прикладной программы процесса, называемой
агентом пользователя, пересылается подключенному к нему агенту передачи сообщений, при этом используются стандартные примитивы службы обработки сообщений. Агент передачи сообщений представляет собой виртуальный почтовый сервер. Используя стандартные протоколы обмена, агенты передачи сообщений обеспечивают передачу информации между агентами пользователя. Основная структура передаваемых сообщений состоит из так называемого конверта и содержимого сообщения. Конверт содержит необходимую для передачи адресную и управляющую информацию. Содержимое сообщения фактически является той информацией, которую отправитель хочет передать получателю.Совокупность всех агентов пользователя и агентов передачи сообщений представляет собой систему обработки сообщений. В свою очередь, система обработки сообщений совместно с пользователями образует среду обработки сообщений. Функционирование системы обработки сообщений поддерживается службой передачи сообщений. Различают пять категорий услуг, предоставляемых службой передачи сообщений. Прежде всего, это базовая служба передачи сообщений, предоставляющая услуги по индикации и управлению передачей сообщений. Следующая категория услуг определяет услуги подачи и доставки, предоставляя пользователю возможность выбора категории доставки и ряд сервисных услуг. Категория услуг преобразования предоставляет возможность преобразования или запрета преобразования для конкретных сообщений. Услуги запросов позволяют агенту пользователя запрашивать информацию, относящуюся к управлению работой системы передачи сообщений. Категория услуг статусов и информирования позволяет переназначать получателя, а также изменять продолжительность отсрочки доставки сообщений. Это позволяет передавать и обрабатывать информацию в наиболее удобное время как для компьютерной сети, так и ее абонентов, существенно снижая стоимость передачи сообщений.
Рассмотренные выше протоколы прикладного уровня являются базовыми и позволяют организовать взаимодействие компьютерной сети практически с любыми пользовательскими системами.
Характер взаимодействия компьютеров в локальной сети принято связывать с их функциональным назначением. Как и в случае прямого соединения, в рамках локальных сетей используется понятие клиент и сервер.
Технология клиент-сервер — это особый способ взаимодействия компьютеров в локальной сети, при котором один из компьютеров (сервер) предоставляет свои ресурсы другому компьютеру (клиенту). В соответствии с этим различают одноранговые сети и серверные сети.При одноранговой архитектуре в сети отсутствуют выделенные серверы, каждая рабочая станция может выполнять функции клиента и сервера. В этом случае рабочая станция выделяет часть своих ресурсов в общее пользование всем рабочим станциям сети. Как правило, одноранговые сети создаются на базе одинаковых по мощности компьютеров. Одноранговые сети являются достаточно простыми в наладке и эксплуатации. В том случае, когда сеть состоит из небольшого числа компьютеров и ее основной функцией является обмен информацией между рабочими станциями, одноранговая архитектура является наиболее приемлемым решением. Подобная сеть может быть достаточно быстро и просто реализована средствами такой популярной операционной системы как Windows 95.
Наличие распределенных данных и возможность изменения своих серверных ресурсов каждой рабочей станцией усложняет защиту информации от несанкционированного доступа, что является одним из недостатков одноранговых сетей. Понимая это, разработчики начинают уделять особое внимание вопросам защиты информации в одноранговых сетях.
Другим недостатком одноранговых сетей является их более низкая производительность. Это объясняется тем, что сетевые ресурсы сосредоточены на рабочих станциях, которым приходится одновременно выполнять функции клиентов и серверов.
В серверных сетях осуществляется четкое разделение функций между компьютерами: одни их них постоянно являются клиентами, а другие — серверами. Учитывая многообразие услуг, предоставляемых компьютерными сетями, существует несколько типов серверов, а именно: сетевой сервер, файловый сервер, сервер печати, почтовый сервер и др.
Сетевой сервер
представляет собой специализированный компьютер, ориентированный на выполнение основного объема вычислительных работ и функций по управлению компьютерной сетью. Этот сервер содержит ядро сетевой операционной системы, под управлением которой осуществляется работа всей локальной сети. Сетевой сервер обладает достаточно высоким быстродействием и большим объемом памяти. При подобной сетевой организации функции рабочих станций сводятся к вводу-выводу информации и обмену ею с сетевым сервером.Термин
файловый сервер относится к компьютеру, основной функцией которого является хранение, управление и передача файлов данных. Он не обрабатывает и не изменяет сохраняемые и передаваемые им файлы. Сервер может "не знать", является ли файл текстовым документом, графическим изображением или электронной таблицей. В общем случае на файловом сервере может даже отсутствовать клавиатура и монитор. Все изменения в файлах данных осуществляются с клиентских рабочих станций. Для этого клиенты считывают файлы данных с файлового сервера, осуществляют необходимые изменения данных и возвращают их обратно на файловый сервер. Подобная организация наиболее эффективна при работе большого количества пользователей с общей базой данных. В рамках больших сетей может одновременно использоваться несколько файловых серверов.Сервер печати (принт-сервер) представляет собой печатающее устройство, которое с помощью сетевого адаптера подключается к передающей среде. Подобное сетевое печатающее устройство является самостоятельным и работает независимо от других сетевых устройств. Сервер печати обслуживает заявки на печать от всех серверов и рабочих станций. В качестве серверов печати используются специальные высокопроизводительные принтеры.
При высокой интенсивности обмена данными с глобальными сетями в рамках локальных сетей выделяются почтовые серверы, с помощью которых обрабатываются сообщения электронной почты. Для эффективного взаимодействия с сетью Internet могут использоваться Web-серверы.
Ethernet
Ethernet - самая популярная технология построения локальных сетей. Основанная на стандарте IEEE 802.3, Ethernet передает данные со скоростью 10 Мбит/с. В сети Ethernet устройства проверяют наличие сигнала в сетевом канале ("прослушивают" его). Если канал не использует никакое другое устройство, то устройство Ethernet передает данные. Каждая рабочая станция в этом сегменте локальной сети анализирует данные и определяет, предназначены ли они ей. Такая схема наиболее действенна при небольшом числе пользователей или незначительном количестве передаваемых в сегменте сообщений. При увеличении числа пользователей сеть
будет работать не столь эффективно. В этом случае оптимальное решение состоит в увеличении числа сегментов для обслуживания групп с меньшим числом пользователей. Между тем в последнее время наблюдается тенденция предоставлять каждой настольной системе выделенные линии 10 Мбит/с. Эта тенденция определяется доступностью недорогих коммутаторов Ethernet. Передаваемые в сети Ethernet пакеты могут иметь переменную длину.Fast Ethernet
В сети Fast Ethernet применяется та же базовая технология, что и в Ethernet - множественный доступ с контролем несущей и обнаружением конфликтов (CSMA/CD, Carrier Sense Multiple Access with Collision Detection). Обе технологии основаны на стандарте IEEE 802.3. В результате для создания сетей обоих типов можно использовать (в большинстве случаев) один и тот же тип кабеля, одинаковые сетевые устройства и приложения. Сети Fast Ethernet позволяют передавать данные со скоростью 100 Мбит/с, то есть в десять раз быстрее Ethernet. При усложнении приложений и увеличении числа обращающихся к
сети пользователей такая повышенная пропускная способность может помочь избавиться от "узких мест", вызывающих увеличение времени отклика сети.Преимущества сетевых решений 10/100 Мбит/с
Недавно появилось новое решение, обеспечивающее одновременно широкую совместимость решений 10-Мбит/с Ethernet и 100-Мбит/с Fast Ethernet. "Двухскоростная" технология 10/100-Мбит/с Ethernet/Fast Ethernet позволяет таким устройствам, как сетевые платы, концентраторы и коммутаторы, работать с любой из этих скоростей (в зависимости от того, к какому устройству они подключены). При подсоединении ПК с сетевой платой 10/100-Мбит/с Ethernet/Fast Ethernet к порту концентратора 10 Мбит/с он будет работать со скоростью 10 Мбит/с. Если же подключить его к 10/100-Мбит/с порту концентратора (такого как 3Com SuperStack II Dual Speed Hub 500), то он автоматически опознает новую скорость и поддерживает 100 Мбит/с. Это дает возможность постепенно, в нужном темпе переходить на более высокую производительность. Кроме того, такой вариант позволяет упростить оборудование сетевых клиентов и серверов для поддержки нового поколения приложений, интенсивно использующих полосу пропускания и сетевые службы.
Gigabit Ethernet
Сети Gigabit Ethernet совместимы с сетевой инфраструктурой Ethernet и Fast Ethernet, но функционируют со скоростью 1000 Мбит/с - в 10 раз быстрее Fast Ethernet. Gigabit Ethernet - мощное решение, позволяющее устранить "узкие места" основной сети (куда подключаются сетевые сегменты, и где находятся серверы). "Узкие места" возникают из-за появления требовательных к полосе пропускания приложений, все большего увеличения непредсказуемых потоков трафика интрасетей и приложений мультимедиа. Gigabit Ethernet предоставляет способ плавного перевода рабочих групп Ethernet и Fast Ethernet на
новую технологию. Такой переход оказывает минимальное влияние на их деятельность и позволяет достичь более высокой производительности.ATM
ATM (Asynchronous Transfer Mode) или режим асинхронной передачи - это технология коммутации, в которой для пересылки данных применяются ячейки фиксированной длины. Функционируя с высокими скоростями, сети ATM поддерживают интегрированную передачу речи, видео и данных в одном канале, выполняя роль и локальных и территориально-распределенных сетей. Поскольку их работа отличается от разновидностей Internet и требует специальной инфраструктуры, такие сети в основном применяются в качестве магистральных сетей (backbone), соединяющих и объединяющих сетевые сегменты.
Технологии с кольцевой архитектурой
Технологии Token Ring и FDDI используются для создания эстафетных сетей с маркерным доступом. Они образуют непрерывное кольцо, в котором в одном направлении циркулирует специальная последовательность битов, называемая маркером (token). Маркер передается по кольцу, минуя каждую
рабочую станцию в сети. Рабочая станция, располагающая информацией, которую необходимо передать, может добавить к маркеру кадр данных. В противном случае (при отсутствии данных) она просто передает маркер следующей станции. Сети Token Ring функционируют со скоростью 4 или 16 Мбит/с и применяются главным образом в среде IBM.FDDI (Fiber Distributed Data Interface) также представляет собой кольцевую технологию, но она разработана для оптоволоконного кабеля и используется в магистральных сетях. Данный протокол аналогичен Token Ring и предусматривает передачу маркера по кольцу от одной рабочей станции к другой. В отличие от Token Ring, сети FDDI обычно состоят из двух колец, маркеры которых циркулируют в противоположных направлениях. Это делается для обеспечения бесперебойной работы сети (как правило на оптоволоконном кабеле) - ее защиты от отказов в одном из колец. Сети FDDI поддерживают скорость 100 Мбит/с и передачу данных на большие расстояния. Максимальная длина окружности сети FDDI составляет 100 км, а расстояние между рабочими станциями - 2 км.
Обе кольцевые технологии находят применение в новейших сетевых инсталляциях как альтернатива ATM и различных разновидностей Ethernet.
Адресация в IP-сетях
Типы адресов: физический (MAC-адрес), сетевой (IP-адрес) и символьный (DNS-имя)
Каждый компьютер в сети TCP/IP имеет адреса трех уровней:
Номер узла в протоколе IP назначается независимо от локального адреса узла. Деление IP-адреса на поле номера сети и номера узла - гибкое, и граница между этими полями может устанавливаться весьма произвольно. Узел может входить в несколько IP-сетей. В этом случае узел должен иметь несколько IP-адресов, по числу сетевых связей. Таким образом IP-адрес характеризует не отдельный компьютер или маршрутизатор, а одно сетевое соединение.
Три основных класса IP-адресов
IP-адрес имеет длину 4 байта и обычно записывается в виде четырех чисел, представляющих значения каждого байта в десятичной форме, и разделенных точками, например:
128.10.2.30 - традиционная десятичная форма представления адреса,
10000000 00001010 00000010 00011110 - двоичная форма представления этого же адреса.
На рисунке показана структура IP-адреса.
Класс А
0 |
N сети |
N узла |
Класс В
1 |
0 |
N сети |
N узла |
Класс С
1 |
1 |
0 |
N сети |
N узла |
Класс D
1 |
1 |
1 |
0 |
адрес группы multicast |
Класс Е
1 |
1 |
1 |
1 |
0 |
зарезервирован |
Рис. 3.1. Структура IР-адреса
Адрес состоит из двух логических частей - номера сети и номера узла в сети. Какая часть адреса относится к номеру сети, а какая к номеру узла, определяется значениями первых битов адреса:
В таблице приведены диапазоны номеров сетей, соответствующих каждому классу сетей.
Класс |
Наименьший адрес |
Наибольший адрес |
A |
01.0.0 |
126.0.0.0 |
B |
128.0.0.0 |
191.255.0.0 |
C |
192.0.1.0. |
223.255.255.0 |
D |
224.0.0.0 |
239.255.255.255 |
E |
240.0.0.0 |
247.255.255.255 |
Соглашения о специальных адресах: broadcast, multicast, loopback
В протоколе IP существует несколько соглашений об особой интерпретации IP-адресов:
0 0 0 0 ................................... 0 0 0 0 |
то он обозначает адрес того узла, который сгенерировал этот пакет;
0 0 0 0 .......0 |
Номер узла |
то по умолчанию считается, что этот узел принадлежит той же самой сети, что и узел, который отправил пакет;
1 1 1 1 .........................................1 1 |
то пакет с таким адресом назначения должен рассылаться всем узлам, находящимся в той же сети, что и источник этого пакета. Такая рассылка называется ограниченным широковещательным сообщением (limited broadcast);
Номер сети |
1111................11 |
то пакет, имеющий такой адрес рассылается всем узлам сети с заданным номером. Такая рассылка называется широковещательным сообщением (broadcast);
Уже упоминавшаяся форма группового IP-адреса - multicast - означает, что данный пакет должен быть доставлен сразу нескольким узлам, которые образуют группу с номером, указанным в поле адреса. Узлы сами идентифицируют себя, то есть определяют, к какой из групп они относятся. Один и тот же узел может входить в несколько групп. Такие сообщения в отличие от широковещательных называются мультивещательными. Групповой адрес не делится на поля номера сети и узла и обрабатывается маршрутизатором особым образом.
В протоколе IP нет понятия широковещательности в том смысле, в котором оно используется в протоколах канального уровня локальных сетей, когда данные должны быть доставлены абсолютно всем узлам. Как ограниченный широковещательный IP-адрес, так и широковещательный IP-адрес имеют пределы распространения в интерсети - они ограничены либо сетью, к которой принадлежит узел - источник пакета, либо сетью, номер которой указан в адресе назначения. Поэтому деление сети с помощью маршрутизаторов на части локализует широковещательный шторм пределами одной из составляющих общую сеть частей просто потому, что нет способа адресовать пакет одновременно всем узлам всех сетей составной сети.
Отображение физических адресов на IP-адреса: протоколы ARP и RARP
В протоколе IP-адрес узла, то есть адрес компьютера или порта маршрутизатора, назначается произвольно администратором сети и прямо не связан с его локальным адресом, как это сделано, например, в протоколе IPX. Подход, используемый в IP, удобно использовать в крупных сетях и по причине его независимости от формата локального адреса, и по причине стабильности, так как в противном случае, при смене на компьютере сетевого адаптера это изменение должны бы были учитывать все адресаты всемирной сети In
ternet (в том случае, конечно, если сеть подключена к Internet'у).Локальный адрес используется в протоколе IP только в пределах локальной сети при обмене данными между маршрутизатором и узлом этой сети. Маршрутизатор, получив пакет для узла одной из сетей, непосредственно подключенных к его портам, должен для передачи пакета сформировать кадр в соответствии с требованиями принятой в этой сети технологии и указать в нем локальный адрес узла, например его МАС-адрес. В пришедшем пакете этот адрес не указан, поэтому перед маршрутизатором встает задача поиска его по известному IP-адресу, который указан в пакете в качестве адреса назначения. С аналогичной задачей сталкивается и конечный узел, когда он хочет отправить пакет в удаленную сеть через маршрутизатор, подключенный к той же локальной сети, что и данный узел.
Для определения локального адреса по IP-адресу используется протокол разрешения адреса
Address Resolution Protocol, ARP. Протокол ARP работает различным образом в зависимости от того, какой протокол канального уровня работает в данной сети - протокол локальной сети (Ethernet, Token Ring, FDDI) с возможностью широковещательного доступа одновременно ко всем узлам сети, или же протокол глобальной сети (X.25, frame relay), как правило не поддерживающий широковещательный доступ. Существует также протокол, решающий обратную задачу - нахождение IP-адреса по известному локальному адресу. Он называется реверсивный ARP - RARP (Reverse Address Resolution Protocol) и используется при старте бездисковых станций, не знающих в начальный момент своего IP-адреса, но знающих адрес своего сетевого адаптера.В локальных сетях протокол ARP использует широковещательные кадры протокола канального уровня для поиска в сети узла с заданным IP-адресом.
Узел, которому нужно выполнить отображение IP-адреса на локальный адрес, формирует ARP запрос, вкладывает его в кадр протокола канального уровня, указывая в нем известный IP-адрес, и рассылает запрос широковещательно. Все узлы локальной сети получают ARP запрос и сравнивают указанный там IP-адрес с собственным. В случае их совпадения узел формирует ARP-ответ, в котором указывает свой IP-адрес и свой локальный адрес и отправляет его уже направленно, так как в ARP запросе отправитель указывает свой локальный адрес. ARP-запросы и ответы используют один и тот же формат пакета. Так как локальные адреса могут в различных типах сетей иметь различную длину, то формат пакета протокола ARP зависит от типа сети. На рисунке 3.2 показан формат пакета протокола ARP для передачи по сети Ethernet.
0 8 16 31
Тип сети |
Тип протокола |
|
Длина локального адреса |
Длина сетевого адреса |
Операция |
Локальный адрес отправителя (байты 0 - 3) |
|
|
Локальный адрес отправителя (байты 4 - 5) |
IP-адрес отправителя (байты 0-1) |
|
IP-адрес отправителя (байты 2-3) |
Искомый локальный адрес (байты 0 - 1) |
|
Искомый локальный адрес (байты 2-5) |
|
|
Искомый IP-адрес (байты 0 - 3) |
|
Формат пакета протокола ARP
В поле типа сети для сетей Ethernet указывается значение 1. Поле типа протокола позволяет использовать пакеты ARP не только для протокола IP, но и для других сетевых протоколов. Для IP значение этого поля равно 0800
16.Длина локального адреса для протокола Ethernet равна 6 байтам, а длина IP-адреса - 4 байтам. В поле операции для ARP запросов указывается значение 1 для протокола ARP и 2 для протокола RARP.
Узел, отправляющий ARP-запрос, заполняет в пакете все поля, кроме поля искомого локального адреса (для RARP-запроса не указывается искомый IP-адрес). Значение этого поля заполняется узлом, опознавшим свой IP-адрес.
В глобальных сетях администратору сети чаще всего приходится вручную формировать ARP-таблицы, в которых он задает, например, соответствие IP-адреса адресу узла сети X.25, который имеет смысл локального адреса. В последнее время наметилась тенденция автоматизации работы протокола ARP и в глобальных сетях. Для этой цели среди всех маршрутизаторов, подключенных к какой-либо глобальной сети, выделяется специальный маршрутизатор, который ведет ARP-таблицу для всех остальных узлов и маршрутизаторов этой сети. При таком централизованном подходе для всех узлов и маршрутизаторов вручную нужно задать только IP-адрес и локальный адрес выделенного маршрутизатора. Затем каждый узел и маршрутизатор регистрирует свои адреса в выделенном маршрутизаторе, а при необходимости установления соответствия между IP-адресом и локальным адресом узел обращается к выделенному маршрутизатору с запросом и автоматически получает ответ без участия администратора.
Отображение символьных адресов на IP-адреса: служба DNS
DNS (Domain Name System)
- это распределенная база данных, поддерживающая иерархическую систему имен для идентификации узлов в сети Internet. Служба DNS предназначена для автоматического поиска IP-адреса по известному символьному имени узла. Спецификация DNS определяется стандартами RFC 1034 и 1035. DNS требует статической конфигурации своих таблиц, отображающих имена компьютеров в IP-адрес.Протокол DNS является служебным протоколом прикладного уровня. Этот протокол несимметричен - в нем определены DNS-серверы и DNS-клиенты. DNS-серверы хранят часть распределенной базы данных о соответствии символьных имен и IP-адресов. Эта база данных распределена по административным доменам сети Internet. Клиенты сервера DNS знают IP-адрес сервера DNS своего административного домена и по протоколу IP передают запрос, в котором сообщают известное символьное имя и просят вернуть соответствующий ему IP-адрес.
Если данные о запрошенном соответствии хранятся в базе данного DNS-сервера, то он сразу посылает ответ клиенту, если же нет - то он посылает запрос DNS-серверу другого домена, который может сам обработать запрос, либо передать его другому DNS-серверу. Все DNS-серверы соединены иерархически, в соответствии с иерархией доменов сети Internet. Клиент опрашивает эти серверы имен, пока не найдет нужные отображения. Этот процесс ускоряется из-за того, что серверы имен постоянно кэшируют информацию, предоставляемую по запросам. Клиентские компьютеры могут использовать в своей работе IP-адреса нескольких DNS-серверов, для повышения надежности своей работы.
База данных DNS имеет структуру дерева, называемого доменным пространством имен, в котором каждый домен (узел дерева) имеет имя и может содержать поддомены. Имя домена идентифицирует его положение в этой базе данных по отношению к родительскому домену, причем точки в имени отделяют части, соответствующие узлам домена.
Корень базы данных DNS управляется центром Internet Network Information Center. Домены верхнего уровня назначаются для каждой страны, а также на организационной основе. Имена этих доменов должны следовать международному стандарту ISO 3166. Для обозначения стран используются трехбуквенные и двухбуквенные аббревиатуры, а для различных типов организаций используются следующие аббревиатуры:
Каждый домен DNS администрируется отдельной организацией, которая обычно разбивает свой домен на поддомены и передает функции администрирования этих поддоменов другим организациям. Каждый домен имеет уникальное имя, а каждый из поддоменов имеет уникальное имя внутри своего домена. Имя домена может содержать до 63 символов. Каждый хост в сети Internet однозначно определяется своим полным доменным именем (fully qualified domain name, FQDN), которое включает имена всех доменов по направлению от хоста к корню. Пример полного DNS-имени :
citint.dol.ru.
Автоматизация процесса назначения IP-адресов узлам сети - протокол DHCP
Как уже было сказано, IP-адреса могут назначаться администратором сети вручную. Это представляет для администратора утомительную процедуру. Ситуация усложняется еще тем, что многие пользователи не обладают достаточными знаниями для того, чтобы конфигурировать свои компьютеры для работы в интерсети и должны поэтому полагаться на администраторов.
Протокол Dynamic Host Configuration Protocol (DHCP) был разработан для того, чтобы освободить администратора от этих проблем. Основным назначением DHCP является динамическое назначение IP-адресов. Однако, кроме динамического, DHCP может поддерживать и более простые способы ручного и автоматического статического назначения адресов.
В ручной процедуре назначения адресов активное участие принимает администратор, который предоставляет DHCP-серверу информацию о соответствии IP-адресов физическим адресам или другим идентификаторам клиентов. Эти адреса сообщаются клиентам в ответ на их запросы к DHCP-серверу.
При автоматическом статическом способе DHCP-сервер присваивает IP-адрес (и, возможно, другие параметры конфигурации клиента) из пула наличных IP-адресов без вмешательства оператора. Границы пула назначаемых адресов задает администратор при конфигурировании DHCP-сервера. Между идентификатором клиента и его IP-адресом по-прежнему, как и при ручном назначении, существует постоянное соответствие. Оно устанавливается в момент первичного назначения сервером DHCP IP-адреса клиенту. При всех последующих запросах сервер возвращает тот же самый IP-адрес.
При динамическом распределении адресов DHCP-сервер выдает адрес клиенту на ограниченное время, что дает возможность впоследствии повторно использовать IP-адреса другими компьютерами. Динамическое разделение адресов позволяет строить IP-сеть, количество узлов в которой намного превышает количество имеющихся в распоряжении администратора IP-адресов.
DHCP обеспечивает надежный и простой способ конфигурации сети TCP/IP, гарантируя отсутствие конфликтов адресов за счет централизованного управления их распределением. Администратор управляет процессом назначения адресов с помощью параметра "продолжительности аренды" (lease duration), которая определяет, как долго компьютер может использовать назначенный IP-адрес, перед тем как снова запросить его от сервера DHCP в аренду.
Примером работы протокола DHCP может служить ситуация, когда компьютер, являющийся клиентом DHCP, удаляется из подсети. При этом назначенный ему IP-адрес автоматически освобождается. Когда компьютер подключается к другой подсети, то ему автоматически назначается новый адрес. Ни пользователь, ни сетевой администратор не вмешиваются в этот процесс. Это свойство очень важно для мобильных пользователей.
Протокол DHCP использует модель клиент-сервер. Во время старта системы компьютер-клиент DHCP, находящийся в состоянии "инициализация", посылает сообщение discover (исследовать), которое широковещательно распространяется по локальной сети и передается всем DHCP-серверам частной интерсети. Каждый DHCP-сервер, получивший это сообщение, отвечает на него сообщением offer (предложение), которое содержит IP-адрес и конфигурационную информацию.
Компьютер-клиент DHCP переходит в состояние "выбор" и собирает конфигурационные предложения от DHCP-серверов. Затем он выбирает одно из этих предложений, переходит в состояние "запрос" и отправляет сообщение request (запрос) тому DHCP-серверу, чье предложение было выбрано.
Выбранный DHCP-сервер посылает сообщение DHCP-acknowledgment (подтверждение), содержащее тот же IP-адрес, который уже был послан ранее на стадии исследования, а также параметр аренды для этого адреса. Кроме того, DHCP-сервер посылает параметры сетевой конфигурации. После того, как клиент получит это подтверждение, он переходит в состояние "связь", находясь в котором он может принимать участие в работе сети TCP/IP. Компьютеры-клиенты, которые имеют локальные диски, сохраняют полученный адрес для использования при последующих стартах системы. При приближении момента истечения срока аренды адреса компьютер пытается обновить параметры аренды у DHCP-сервера, а если этот IP-адрес не может быть выделен снова, то ему возвращается другой IP-адрес.
В протоколе DHCP описывается несколько типов сообщений, которые используются для обнаружения и выбора DHCP-серверов, для запросов информации о конфигурации, для продления и досрочного прекращения лицензии на IP-адрес. Все эти операции направлены на то, чтобы освободить администратора сети от утомительных рутинных операций по конфигурированию сети.
Однако использование DHCP несет в себе и некоторые проблемы. Во-первых, это проблема согласования информационной адресной базы в службах DHCP и DNS. Как известно, DNS служит для преобразования символьных имен в IP-адреса. Если IP-адреса будут динамически изменятся сервером DHCP, то эти изменения необходимо также динамически вносить в базу данных сервера DNS. Хотя протокол динамического взаимодействия между службами DNS и DHCP уже реализован некоторыми фирмами (так называемая служба Dynamic DNS), стандарт на него пока не принят.
Во-вторых, нестабильность IP-адресов усложняет процесс управления сетью. Системы управления, основанные на протоколе SNMP, разработаны с расчетом на статичность IP-адресов. Аналогичные проблемы возникают и при конфигурировании фильтров маршрутизаторов, которые оперируют с IP-адресами.
Наконец, централизация процедуры назначения адресов снижает надежность системы: при отказе DHCP-сервера все его клиенты оказываются не в состоянии получить IP-адрес и другую информацию о конфигурации. Последствия такого отказа могут быть уменьшены путем использовании в сети нескольких серверов DHCP, каждый из которых имеет свой пул IP-адресов.
Литература
В.Г. Олифер Базовые технологии компьютерных сетей (ознакомительное качество) Высокое качество PDF, для печати :-)
Михаил Гук. Интерфейсы ПК. Справочник (ознакомительное качество) Высокое качество PDF, для печати :-)
К предыдущему документу | Главная | К следующему документу |
Дата модификации: 26 Ноября 2008 г. |